Coccinelle: A program matching
and transformation tool

@

Himangi Saraogi, Linux kernel intern,
FOSS Outreach Program for Women Round 8,
Mentor: Julia Lawall

Linux.conf.au

Literally

A Coccinelle (ladybug) is a bug that eats smaller bugs.

All together is better!!!

by T s k.
o3 L-""
‘;1

#
o
U

-

COCCINE
In

s

My work with Coccinelle!

Develop/harden coccinelle semantic patches to
integrate into the kernel.

* |dentify bugs that are prevalent across the kernel.
(coccinellery)

» Send patches solving the bug to discuss whether it is
an issue of concern.

* Develop coccinelle scripts to fix those bugs.
* Analyze results of the scripts.

» Send patches for the scripts to be accepted into the
kernel.

Why do we need Coccinelle?

* Bugs are unfortunate but everywhere.

e Systems code is often huge and rapidly
evolving.

« Systems code Is often in C.

* Linux Is a highly critical software with a huge
codebase.

* There are various developers with different
levels of experience contributing to the kernel.

Common programming problems

 Programmers don’t really understand how C works.
- lel & e2 does a bit-and with O or 1.
A simpler API function exists, but not everyone uses lIt.

- Mixing different functions for the same purpose is
confusing.

« Afunction may fail, but the call site doesn’t check for
that.

- Arare error case will cause an unexpected crash
* Etc.

Need for pervasive code changes

Example: Bad bit-and

if (!dma_cntrl & DMA_START_BIT) {
BCMLOG (BCMLOG_DBG, "Already Stopped\n");
return BC_STS_SUCCESS;

From drivers/staging/crystalnhd/crystalhd hw.c

Example: Inconsistent API usage

drivers/mtd/nand /r852.c:

if (!bounce) {
dev->phys_dma_addr =

pci_map_single(dev->pci_dev, (void *)buf, R852_DMA_LEN,
(do_read 7 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE));

if (pci_dma_mapping_error(dev->pci_dev, dev->phys_dma_addr))
bounce = 1;

drivers/mtd/nand/denali.c:

denali->buf.dma_buf =

dma_map_single(&dev->dev, denali->buf.buf, DENALI_BUF_SIZE,
DMA_BIDIRECTIONAL) ;
if (dma_mapping_error(&dev->dev, denali->buf.dma_buf))
pci_set_master(dev);

ret = pci_request_regions(dev, DENALI_NAND_NAME) ;

Example: Missing error check

alloc = kmalloc(sizeof *alloc, GFP_KERNEL);

INIT_LIST_HEAD (&intmem_allocations) ;

intmem_virtual = ioremap(MEM_INTMEM_START + RESERVED_SIZE,
MEM_INTMEM_SIZE - RESERVED_SIZE);

initiated = 1;

alloc—->size = MEM_INTMEM_SIZE - RESERVED_SIZE;

From arch/cris/arch-v32/mm/intmem.c

Collateral Evolutions

1ib.cC

Evolution int foo (int x) {
becomes

int bar (int x, int y) {

4 before
Legend: o
Collateral Evolutions (CE) in clients clientn.c
clientl.c client2.c i l
foo (1) ; foo(foo(2)) ;
bar(1,?); bar(bar(2,?),?);

Why Is collateral evolution
significant?
* The kernel has many libraries each with many

clients.

- Lots of driver support libraries: one per device type, one
per bus (pci library, sound library, ...).

- Lots of device specific code : Drivers make up more than
50% of Linux.

 Many evolutions and collateral evolutions occur.

» Examples of evolution :

- Add argument, split data structure, getter and setter
Introduction, protocol change, change return type, add
error checking, ...

Reqguirements for automation

* The ability to abstract over irrelevant information:

- If ('dma_cntrl & DMA START BIT) { ... }: dma_cntrl is
not important.

* The ability to match scattered code fragments:
- kmalloc may be far from the first dereference.
* The ability to transform code fragments:

- Replace pci map single by dma map single, or vice
versa.

Our goals

* Bug finding and fixing
- Automatically find code containing bugs or defects.

- Automatically fix bugs or defects.
- Provide a system that is accessible to software developers.

e Collateral evolutions

— Search for patterns of interaction with the library
- Systematically transform the interaction code

What Coccinelle can do?

 Static analysis to find patterns in C source code.
« Automatic transformation to fix bugs.

» Generate different information of bugs based on script mode.

- Patch : apply transformations to files where the bug is detected.

- Context : just marks out the changes that will be done, without
actually making the changes.

- Org : lists in TODO format with exact line humber and column
positions of the bugs.

- Report : logs a custom message which has the line numbers and
files with the warning or error.

Program matching and transformation for unpreprocessed C

The Coccinelle tool

code.

Scripts that can run every time we make a change to the file to

ensure that the specific bugs are not being introduced.

A single small semantic patch can modify hundreds of files, at

thousands of code sites.
Semantic Patch Language (SmPL):

Based on the syntax of patches

“Semantic Patch” notation abstracts and generalises “patches”.
Declarative approach to transformation

High level search that abstracts away from irrelevant details

Using SmPL to abstract away from
Irrelevant details

Differences in spacing, indentation, and comments

» Give names to variables that can be expressions,
statements, constants etc.

- use of metavariables
Irrelevant code

- use of '..."' operator
» Other variations in coding style (use of isomorphisms).
~- e.g. if(ly) <=> if(y==NULL) <=> if(NULL==y)
Patch-like notation (—/+) for expressing transformations.

How does the Coccinelle work?

Parse C file Parse Semantic Patch
l
Expand isomorphisms
Translate to CFG Translate to CTL
\ /

Match CTL against CFG using
a model checking algorithm

l

Modify matched code

|

Unparse

Example 1: Finding and fixing
IX&y bugs

e The problem:

— Combining a boolean (0/1) with a constant using & is usually
meaningless.

- In particular, if the rightmost bit of y is 0, the result will always be 0.

« Example:

* Did this counter overflow? */
if (!pmu_read register(idx, CCl_PMU_OVRFLW) & CCl_ PMU_OVRFLW_FLAG)
if ({{(pmu_read_reqister(idx, CCl_ PMU_OVRFLW) &

CCl PMU_OVRFLW_FLAG))

continue:;

e The solution: Add parentheses.

The semantic patch

 Here, y IS a constant.

@@ expression E; constant C; @@ o _
(« We have a disjunction so that

IE & IC no transformation takes place
| when y is itself negated, as an
- 'BE&C expression of the form x&!y

J)r 1 (E & C) may make sense.

Example 2: Inconsistent APl usage

Do we need this function?

static inline dma_addr_t
pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size,
int direction)
{
return dma_map_single(hwdev == NULL ? NULL : &hwdev->dev, ptr,
size, (enum dma_data_direction)direction) ;

The use of pci_map_single

dev->phys_dma_addr =
pci_map_single(dev->pci_dev, (void *)buf, R852_DMA_LEN,
(do_read 7 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE));

would be more uniform as:

dev->phys_dma_addr =
dma_map_single(&dev->pci_dev->dev, (void *)buf, R852_DMA_LEN,
(do_read 7 DMA_FROM_DEVICE : DMA_TO_DEVICE));

PCl constants DMA constants
/* This defines the direction arg enum dma_data_direction {
to the DMA mapping routines. */ DMA_BIDIRECTIONAL = 0,

#define PCI_DMA_BIDIRECTIONAL 0 DMA_TO_DEVICE = 1,
#define PCI_DMA_TODEVICE 1 DMA_FROM_DEVICE = 2,
#define PCI_DMA_FROMDEVICE 2 DMA_NONE = 3,
#define PCI_DMA_NONE 3 }:

@@ expression E1,E2,E3,E4; @QC

The semantic patch

- pci_map_single(E1l,
+ dma_map_single(&E1->dev,

E2, E3, E4)

@@ expression E1,E2,E3; Q@
dma_map_single(E1, E2, E3,

(

+

+

+

— +

PCI_DMA_BIDIRECTIONAL
DMA_BIDIRECTIONAL

PCI_DMA_TODEVICE
DMA_TO_DEVICE

PCI_DMA_FROMDEVICE
DMA_FROM_DEVICE

PCI_DMA_NONE
DMA_NONE_DEVICE

e Change function name.

 Add field access to the first
argument.

 Rename the fourth argument.

Example 3: Dereference of a
possibly NULL value
+ ;ﬁruct ;:;é *;£; Cun—->sky

unsigned int mask = 0;

if (!'tun)
return POLLERR;

+ sk = tun->sk;

Here, tun was being dereferenced before a NULL
test.

The semantic patch

ffpe T Find cases where a pointer is
expression E; dereferenced and then
identifier i, fld, fl; compared with NULL.
ééateme”t o - Avery special case where the
dereference is part of a
- T1i=E->fld:; declaration.
T « Isomorphisms cause
when != E
when != i E == NULL to also match eg !E.
when !'= f1(...,&E,)

Example 4: Devm functions

* There are managed interfaces for allocating resources.
Example: devm_kzalloc, devm_Iloremap etc.

laplatform@ @rem depends on prb@
identifier p, probefn, removefn; identifier platform.removefn;
@@ expression e;
struct platform_driver p = { @@

.probe = probefn, removefn(...) {

.remove = removefn, <...
}; - kfree(e);

P

@prb@ }

identifier platform.probefn, pdev;
expression e, el, e2;

@G e Convert kzalloc to

probefn(struct platform_device *pdev, ...) {

<t... devm_kzalloc.

- e = kzalloc(el, e2)
+ e = devm_kzalloc(&pdev->dev, el, e2)

» Kfrees are no longer
?-kfree(e); required in the probe and

T

} remove functions.

Example 5: Remove get and put

e Evolution: scsi_get()/scsi_put() dropped from SCSI
library.

» Collateral evolutions: SCSI resource now passed directly
to proc_info callback functions via a new parameter.

From local var
int a proc_info(int x +~.______par'a1l:r?e1‘er'
, SCsi *y

) o

Delete calls
to library

_/B;efe error

scsi *y;

y = scsi_get();

::.f-(!y) { ... return -1 _Chfé:é‘éng
scsi_put (y) ;

.. before
} Legend: after

Semantic patch

proc info.sp

ee
4 _proc_info;
X ¥
e@
int a proc info(int x
+ Scsi *y
|

= scsi *y,;

- ¥ = scsi_get () ;
= if(!y) { ... return -1; }

= é:-:éi_put {y);

int £53c700_info(int limit)
{

char *buf;

scsil *so;

sc = scsi_get () ;

if(!sc) {
printk ("error”) ;
return -1;

}
wd7000_setup(sc) ;

PRINTP ("val=%d4d",
sc->fiald+limit) ;

scsi_put (sc);

raturn 0;

—-dir linux—next

$ spatch -sp_file proc_info.sp

int s53c¢700_ info(int limit,
{

char *buf;

wd7000_setup(sc);
PRINTP (“val=%d",
sc->field+limit) ;

raturn 0;

scsi *sc)

/linux/scripts/coccinelle!!

virtual patch

virtual context i
i rtual // PFor org and report mode
virtual org
virtual report 1
= e e Exr@
expression &;
J// For context mode xp_ .
= e e position p;

aa

@dep&nd? on context@ if (e) BUGEp ():
expression e;

ee @script:python depends on org@
p << r.p;
] "
if {E} BUG':} r @@
/- coccilib.org.print_todo (p[0], "WARNING use BUG ON")
// For patch mode - -
S e e e e e e e s Escript:python depends on reportg
p << r.p;
#depends on patch@ @

expression e;

ee msg="WARNING: Use BUG ON"

coccilib.report.print report(p[0], msg)
-if (e) BUG(); a

+BUG ON (e) ;

Things to remember while using
Coccinelle

* The semantic patches can have multiple rules.

* The rules are applied file by file in the same order as
they appear in the semantic patch.

 We can have * in the patch to only find patterns but
not transform anything.(context mode)

 Positions can be marked and relevant information
such as line number and the variable names can be
printed as messages. (report and org modes)

* To check if the syntax of the script is right, run:
spatch --parse-cocci sp.coccli

Nothing Is perfect.

* Including header files
Increases running time:

--no-includes --include-headers
e Pretty printing.

* \Warnings or error messages
are not very informative.

init_defs_builtins: fusr/local/sharef/coccinelle/standard.h
46 60
Fatal error: exception Failure("plus: parse error:

= File "iserrnull.cocci”, line 6, column 2, charpos = 46
around = "IS_ERR_OR_NULL', whole content = + IS_ERR_OR_NULL(e)

")

Conclusion

» A patch-like program matching and transformation language

* Over 450 patches created using Coccinelle are being used
to develop the Linux kernel. (Coccinellery)

» 49 patches in the Linux kernel itself, and a makefile target
(make coccicheck) for running them, on the whole kernel, a
particular subdirectory, or files with uncommitted changes.

* Looks like a patch; fits with Systems (Linux) programmers’
nabits.

* Quite “easy” to learn; widely accepted by the Linux
community.

* Probable bugs found in gcc, postgresql, vim, amsn, pidgin,
mplayer, openssl, vic, wine.

Thank you

Himangi Saraogi
himangi774@gmail.com

Website: http://web.iiit.ac.in/~himangi.saraogi
http://himangi99.wordpress.com/

