

 Coccinelle: A program matching
and transformation tool

Himangi Saraogi, Linux kernel intern,
FOSS Outreach Program for Women Round 8,

Mentor: Julia Lawall

Linux.conf.au

Literally

A Coccinelle (ladybug) is a bug that eats smaller bugs.

My work with Coccinelle!

Develop/harden coccinelle semantic patches to
integrate into the kernel.

● Identify bugs that are prevalent across the kernel.
(coccinellery)

● Send patches solving the bug to discuss whether it is
an issue of concern.

● Develop coccinelle scripts to fix those bugs.

● Analyze results of the scripts.

● Send patches for the scripts to be accepted into the
kernel.

Why do we need Coccinelle?

● Bugs are unfortunate but everywhere.

● Systems code is often huge and rapidly
evolving.

● Systems code is often in C.

● Linux is a highly critical software with a huge
codebase.

● There are various developers with different
levels of experience contributing to the kernel.

Why do we need Coccinelle?

Common programming problems

● Programmers don’t really understand how C works.

– !e1 & e2 does a bit-and with 0 or 1.

● A simpler API function exists, but not everyone uses it.

– Mixing different functions for the same purpose is
confusing.

● A function may fail, but the call site doesn’t check for
that.

– A rare error case will cause an unexpected crash

● Etc.

Need for pervasive code changes

Example: Bad bit-and

From drivers/staging/crystalhd/crystalhd hw.c

Example: Inconsistent API usage

Example: Missing error check

Collateral Evolutions

Why is collateral evolution
significant?

● The kernel has many libraries each with many
clients.

– Lots of driver support libraries: one per device type, one
per bus (pci library, sound library, ...).

– Lots of device specific code : Drivers make up more than
50% of Linux.

● Many evolutions and collateral evolutions occur.

● Examples of evolution :

– Add argument, split data structure, getter and setter
introduction, protocol change, change return type, add
error checking, ...

Requirements for automation

● The ability to abstract over irrelevant information:

– if (!dma_cntrl & DMA START BIT) { ... }: dma_cntrl is
not important.

● The ability to match scattered code fragments:

– kmalloc may be far from the first dereference.

● The ability to transform code fragments:

– Replace pci map single by dma map single, or vice
versa.

Our goals

● Bug finding and fixing

– Automatically find code containing bugs or defects.

– Automatically fix bugs or defects.

– Provide a system that is accessible to software developers.

● Collateral evolutions

– Search for patterns of interaction with the library

– Systematically transform the interaction code

What Coccinelle can do?

● Static analysis to find patterns in C source code.

● Automatic transformation to fix bugs.

● Generate different information of bugs based on script mode.

– Patch : apply transformations to files where the bug is detected.

– Context : just marks out the changes that will be done, without
actually making the changes.

– Org : lists in TODO format with exact line number and column
positions of the bugs.

– Report : logs a custom message which has the line numbers and
files with the warning or error.

The Coccinelle tool

● Program matching and transformation for unpreprocessed C
code.

● Scripts that can run every time we make a change to the file to
ensure that the specific bugs are not being introduced.

● A single small semantic patch can modify hundreds of files, at
thousands of code sites.

● Semantic Patch Language (SmPL):

– Based on the syntax of patches

– “Semantic Patch” notation abstracts and generalises “patches”.

– Declarative approach to transformation

– High level search that abstracts away from irrelevant details

Using SmPL to abstract away from
irrelevant details

● Differences in spacing, indentation, and comments

● Give names to variables that can be expressions,
statements, constants etc.

– use of metavariables

● Irrelevant code

– use of '...' operator

● Other variations in coding style (use of isomorphisms).

– e.g. if(!y) <=> if(y==NULL) <=> if(NULL==y)

● Patch-like notation (−/+) for expressing transformations.

How does the Coccinelle work?

Example 1: Finding and fixing
!x&y bugs

● The problem:

– Combining a boolean (0/1) with a constant using & is usually
meaningless.

– In particular, if the rightmost bit of y is 0, the result will always be 0.

● Example:

● The solution: Add parentheses.

The semantic patch

● Here, y is a constant.

● We have a disjunction so that
no transformation takes place
when y is itself negated, as an
expression of the form !x&!y
may make sense.

Example 2: Inconsistent API usage

Do we need this function?

The use of pci_map_single

would be more uniform as:

The semantic patch

● Change function name.

● Add field access to the first
argument.

● Rename the fourth argument.

Example 3: Dereference of a
possibly NULL value

Here, tun was being dereferenced before a NULL
test.

The semantic patch

● Find cases where a pointer is
dereferenced and then
compared with NULL.

● A very special case where the
dereference is part of a
declaration.

● Isomorphisms cause

E == NULL to also match eg !E.

Example 4: Devm functions
● There are managed interfaces for allocating resources.

Example: devm_kzalloc, devm_ioremap etc.

● Convert kzalloc to
devm_kzalloc.

● Kfrees are no longer
required in the probe and
remove functions.

Example 5: Remove get and put
● Evolution: scsi_get()/scsi_put() dropped from SCSI

library.

● Collateral evolutions: SCSI resource now passed directly
to proc_info callback functions via a new parameter.

Semantic patch

/linux/scripts/coccinelle!!

Things to remember while using
Coccinelle

● The semantic patches can have multiple rules.

● The rules are applied file by file in the same order as
they appear in the semantic patch.

● We can have * in the patch to only find patterns but
not transform anything.(context mode)

● Positions can be marked and relevant information
such as line number and the variable names can be
printed as messages. (report and org modes)

● To check if the syntax of the script is right, run:

spatch --parse-cocci sp.cocci

Nothing is perfect.

● Including header files
increases running time:

--no-includes --include-headers

● Pretty printing.

● Warnings or error messages
are not very informative.

Conclusion
● A patch-like program matching and transformation language

● Over 450 patches created using Coccinelle are being used
to develop the Linux kernel. (Coccinellery)

● 49 patches in the Linux kernel itself, and a makefile target
(make coccicheck) for running them, on the whole kernel, a
particular subdirectory, or files with uncommitted changes.

● Looks like a patch; fits with Systems (Linux) programmers’
habits.

● Quite “easy” to learn; widely accepted by the Linux
community.

● Probable bugs found in gcc, postgresql, vim, amsn, pidgin,
mplayer, openssl, vlc, wine.

Thank you

Himangi Saraogi

himangi774@gmail.com

Website: http://web.iiit.ac.in/~himangi.saraogi

http://himangi99.wordpress.com/

