
@coreoslinux



About Me
CTO/CO-FOUNDER
systems engineer

@brandonphilips
github.com/philips



etcd
 



/etc
distributed



open source software
failure tolerant
durable
watchable
exposed via HTTP
runtime reconfigurable



Data Store API

-X GET
Get Wait

-X PUT
Put Create CAS

-X DELETE
Delete CAD

 



Leader

Follower

etcd Cluster



Applications
locksmith







Cluster Wide Reboot Lock

1. Need reboot to reboot? Decrement the 
semaphore key atomically with etcd.

2. manager.Reboot() and wait...

3. After rebooting increment the semaphore 
key in etcd atomically.



Applications
kubernetes and fleet



You

Scheduler API

Scheduler

Machine(s)



Cluster Work Scheduling

1. Cluster API writes desired work into etcd 
keyspace.

2. Agents running on individual machines pick 
up work assigned to them.

3. Agents report where work is running and 
current status.



Applications
vulcan, confd, dns and distributed git



Example Leader Election
using TTL and atomic operations



PUT /6eadeac2d/f1d2d2f924e98
‘http://10.1.2.3:7001’



PUT /6eadeac2d/f1d2d2f924e98
‘http://10.1.2.3:7001’

Entry

1
/6eadeac2d/f1d2df

http://10.1.2.3:7001



1
/6eadeac2d/f1d2df

http://10.1.2.3:7001

PUT /6eadeac2d/f1d2d2f924e98
‘http://10.1.2.3:7001’

Index



1
/6eadeac2d/f1d2df

http://10.1.2.3:7001

PUT /6eadeac2d/f1d2d2f924e98
‘http://10.1.2.3:7001’

Key



1
/6eadeac2d/f1d2df

http://10.1.2.3:7001

PUT /6eadeac2d/f1d2d2f924e98
‘http://10.1.2.3:7001’

Value



Idx Key Value Expiration Time
18 sched m3 Sept 18 2:11:30



Idx Key Value Expiration Time
18 sched m3 Sept 18 2:11:30

schedlr
m3



cas(sched, 18, m3)

cas(sched, 18, m3)

schedlr
m3

Idx Key Value Expiration Time
18 sched m3 Sept 18 2:11:30



cas(sched, 30, m3)

cas(sched, 30, m3)

schedlr
m3

Idx Key Value Expiration Time
30 sched m3 Sept 18 2:12:50



cas(sched, 45, m3)

cas(sched, 45, m3)

schedlr
m3

Idx Key Value Expiration Time
45 sched m3 Sept 18 2:13:30



sync(2:13:00)

sync(2:13:00)

Idx Key Value Expiration Time
45 sched m3 Sept 18 2:13:30



sync(2:13:15)

sync(2:13:15)

Idx Key Value Expiration Time
45 sched m3 Sept 18 2:13:30



sync(2:13:30)

sync(2:13:30)

Idx Key Value Expiration Time
45 sched m3 Sept 18 2:13:30



sync(2:13:30)

sync(2:13:30)

Idx Key Value Expiration Time



create(sched, m5)

create(sched, m5)

Idx Key Value Expiration Time
50 sched m5 Sept 18 2:13:35

schedlr
m5



etcd basics
clusters and bootstrapping



Leader

Follower

etcd Cluster



bootstrapping

Candidate



GET discovery.etcd.io/new



discovery.etcd.io/6eadeac2

6eadeac2d



6eadeac2d/state

CREATE 



6eadeac2d/state

Key Value Index
state started 5890
n0 10.0.2.1 5891
n1 10.0.2.4 5898
...



bootstrapped

Leader

Follower





6eadeac2d/state

CREATE 





1 2 3 4{
Log



1 2 3 4

Entries



1 2 3 4

Indexes



Sequential Consistency
Operations* are atomically executed in the 

same sequential order on all machines.



1

1

1

2
Pet=dog

Pet=cat 

Pet=cat 

1

2

PUT Pet = cat

PUT Pet = dog



1

1

1

2

2

1

2

PUT Pet = cat

PUT Pet = dog

Pet=dog

Pet=dog 

Pet=cat 



1

1

1

2

2

2

1

2

PUT Pet = cat

PUT Pet = dog

Pet=dog

Pet=dog 

Pet=dog 



Sequential Consistency
Real-time



1

1

1

2

GET Pet @ 10:00.0 -> 1[cat]!?

GET Pet @ 10:00.0 -> 2[dog]

2



1

1

1

2

2

2

GET Pet @ 10:00.1 -> 1[dog]



Sequential Consistency
Index Time



1

1

1

2

GET Pet @ 2 -> blocking

GET Pet @ 2 -> 2[dog]

2



1

1

1

2

GET Pet @ 2 -> 2[dog]

2

2



etcd guarantees that a get at 
index X will always return the 

same result.

Avoid thinking in terms of real time because with network 
latency the result is always out-of-date.



Quorum GETs
GET via Raft



1

1

1

2

2



1

1

1

2

QGET A

2



1

1

1

2

QGET A -> 2[dog]

2

2



1

1

1

2

QGET A -> 2[dog]

2

2

3

3



Watchable Changes
HTTP Long-poll



1 2 3

> GET asdf?waitIndex=4&wait=true HTTP/1.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< X-Etcd-Index: 3
< X-Raft-Index: 97
< X-Raft-Term: 0
<
BLOCK



1 2 3 4

> GET asdf?waitIndex=4&wait=true HTTP/1.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< X-Etcd-Index: 3
< X-Raft-Index: 97
< X-Raft-Term: 0
<
{"action":"set","node":{"key":"/asdf","value":"foobar","
modifiedIndex":4,"createdIndex":4}}



1 2 3 4

> GET asdf?waitIndex=4&wait=true HTTP/1.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< X-Etcd-Index: 4
< X-Raft-Index: 516
< X-Raft-Term: 0
<
{"action":"set","node":{"key":"/asdf","value":"foobar","
modifiedIndex":4,"createdIndex":4}}



Event History
History isn’t forever, prepare!



Availability
In a 2F+1 cluster tolerate F machine failures



Available



Available



Available



Unavailable



Master Election
Fast recovery (5-10*typical RTT) from 

temporarily unavailable



Available

Leader

Follower



Leader

Follower

Available



Leader

Follower

Temporarily Unavailable



Leader

Follower

Available



Durable
log files, snapshots and backups



Mistakes so far...



Log files

Filesystems truncate and corrupt data.

Solutions:
● Must use checksumming in the file to ensure 

sanity
● Throwing out broken log files must be 

handled by the server



etcd machine naming

Trusted users to manage unique names across 
the cluster. This went poorly.

● Misconfiguration from bugs
● Misconfiguration by users
● Machine cloning on the cloud

Solution: etcd data-dir owns a unique uuid.



sync() in the cloud

Slow, slow, slow:
● User #1 OpenStack on spinning disk: 6s
● User #2 AWS EBS backed: 1.5s

Solution: 
● Tune etcd to expect this long latency. 
● Write batching and handling of behind 

machines.



Wednesday 10:40am LCA
CoreOS: An Introduction

Wednesday 6:00pm AKL Continuous Delivery 
Meetup.
CoreOS: An Introduction

Thursday 6:00 PM Go AKL Meetup
Something about Go 

Friday 10:40am LCA
CoreOS Tutorial 



Thanks
 
 we like pull requests
 github.com/coreos/etcd


