
Hop, Skip, Jump

Implementing a concurrent interpreter with Promises

Timothy Jones

Victoria University of Wellington

tim@ecs.vuw.ac.nz

January 14, 2015

mailto:tim@ecs.vuw.ac.nz


Background

This Talk

Implementing a fully asynchronous JavaScript application

Using Promises to tame asynchronous behaviour

Extending the standard Promises with custom behaviour

The costs of naïve implementation

1



Background

Grace

A programming language

2



Background

Grace

object {
var name := "Bob"
method talk {
print "My name is {name}"

}
}

if (x > 1) then {
while { x < y } do {
x := x ˆ 2

}
}

3



Background

Implementation

Minigrace, compiling to C and JavaScript

Trial courses running in simple Web-based editor

Runtime execution in the browser

4



Background

Browser Execution

The editing environment occupies the same runtime as the code

How might we implement the while-do loop as a JavaScript function?

function whileDo(condBlock, doBlock) {
while (condBlock.apply()) {
doBlock.apply();

}
}

5



Background

Browser Execution

Whoops!

while { true } do {}

Cannot use threads (without losing direct access to the DOM)

6



Hop

The Hop

Hopper is a Grace interpreter written in asynchronous JavaScript

Asynchronous JavaScript is awful to write

I Pyramid of Doom

I Di�cult control �ow (no guarantee of code ordering)

I Inherently non-composable

I Explicit error handling everywhere

7



Hop

Async JS

var current = 0, total = urls.length;
for (var i = 0; i < total; i++) {
get(url, function (err) {

if (err) console.error("failed to pull data");
if (++current === total)
console.log(urls[i] + " was last");

});
console.log("reading " + url);

}

8



Hop

Async JS

Hopper started out this way

Quickly �lled complexity budget

9



Hop

Promises

Promises, or Futures, are a standard solution to this problem

Encode the concept of an asynchronous operation as a value

All interactions are asynchronous

I Detecting if the operation has �nished

I Retrieving the result of the operation

I Performing a subsequent operation

10



Hop

Then

All of those interactions are the same thing!

get(url1).then(function (contents) {
post(url2, contents);

});

11



Hop

Then

And now asynchronous actions are composable

get(url1).then(function (contents) {
return post(url2, contents);

});

12



Hop

Promises/A+

Promises for JavaScript strictly speci�ed by Promises/A+

Really de�nes the behaviour of then

I A promise is just any object with a conformant then

Implementations provide constructors and helper methods

13



Hop

De�ning then

promise.then(onFulfilled, onRejected)

Both arguments optional, called as appropriate, at most once

They must not be called until the stack is empty

14



Hop

De�ning then

Returns a task that represents both executions

P

P f (v)

If the subsequent function returns a task, that is also included

P f (v)

v

15



Hop

De�ning then

Returns a task that represents both executions

P

then(f )

P f (v)

If the subsequent function returns a task, that is also included

P f (v)

v

15



Hop

De�ning then

Returns a task that represents both executions

P

then(f )

P f (v)

v

If the subsequent function returns a task, that is also included

P f (v)

v

15



Hop

De�ning then

Returns a task that represents both executions

P

then(f )

P f (v)

v

If the subsequent function returns a task, that is also included

P f (v)

v

15



Hop

Pleasant Async

function whileDo(condBlock, doBlock) {
return condBlock.apply().then(function (cond) {

if (cond) {
return doBlock.apply().then(function () {

return whileDo(condBlock, doBlock);
});

}
});

}

16



Hop

Tasks

Hopper promises aren’t compliant, and so are called Tasks

Can be given a this value, which carries on to then calls

Why does the stack need to be cleared?

I E�ectively equivalent to tail-call optimisation

I JavaScript has a tiny maximum stack height

I Also necessary to preserve non-synchronous nature

I Now e�ciently performed with asap

17



Hop

Tasks

Tasks can be manually constructed

new Task(function (resolve, reject) {
get(url, function (err, contents) {

if (err) reject(err);
else resolve(contents);

})
});

They manually yield to the event loop every 50ms

I Switch to setImmediate instead of asap

18



Hop

Async Methods

Now Grace methods can block execution without blocking the thread

var contents := get(url1)
post(url2, contents)
print "Posted to the url"

19



Hop

Async Methods

It’s also really easy to build lightweight threading

function spawn(block) {
block.apply(); // Yields, will continue in the future
return new Task(function (resolve) {
resolve();

});
}

20



Hop

Async Methods

Once the function is exposed to Grace:

spawn {
while { true } do {
print "spawned"

}
}

while { true } do {
print "original"

}

21



Hop

Viral Async

We don’t know if a method is going to be async

To get a reliable interface, we have to assume every method is

What about methods that must run synchronously?

I Important for FFI: a Grace object masquerading as a JS object

var myTalk := object {
method speakingTime is synchronous {

return random.numberFrom(32) to(57)
}

}

22



Hop

Now and Then

The now method behaves like then, but it must occur synchronously

I If a task is waiting to asap, it has a deferred method

I This method can be invoked early to force it to run immediately

I If it ends up depending on another task, it also forces that task

If a task is forced (or has nothing to force) but is still not complete, the

task resulting from the call to now is immediately rejected

I This rejection is visible in Grace

now completely breaks the concept of a promise as a black box

23



Hop

Stop

We want to be able to stop running code from the editor

I Would also like this to be modular

Hop from one task to the next, causing the �nal task to be rejected

waitingOn waitingOn

stop also breaks the black box

It’s also probably a bad idea: better to kill the interpreter

24



Hop

Stop

We want to be able to stop running code from the editor

I Would also like this to be modular

Hop from one task to the next, causing the �nal task to be rejected

waitingOn waitingOn

stop() stop() stop()

stop also breaks the black box

It’s also probably a bad idea: better to kill the interpreter

24



Hop

Stop

We want to be able to stop running code from the editor

I Would also like this to be modular

Hop from one task to the next, causing the �nal task to be rejected

waitingOn waitingOn

stop also breaks the black box

It’s also probably a bad idea: better to kill the interpreter

24



Hop

Stop

We want to be able to stop running code from the editor

I Would also like this to be modular

Hop from one task to the next, causing the �nal task to be rejected

InterruptErrorInterruptError

stop also breaks the black box

It’s also probably a bad idea: better to kill the interpreter

24



Hop

The Story So Far

Tasks provide consistency in an unpredictable asynchronous world

Black-box approach is incompatible with more complex requirements

I Once you go async, you can’t go back

Hopper uses tasks everywhere! (Even in the parser)

25



Skip

Tasks are Expensive

Yielding to the event loop is an expensive operation

The overall cost of the task machinery is enormous

What can we do to cut down on memory and performance losses?

26



Skip

The Skip

Garbage is the main problem

I Lots of allocations

I Can we take advantage of generational GC?

27



Skip

Analysis

Returning to our original problem

while { true } do {}

This now no longer hangs the browser

But at what cost?

28



Skip

Analysis

While loops don’t run in constant memory!

I Some allocation is to be expected

I But nothing is being thrown away here

29



Skip

Pleasant Async?

function whileDo(condBlock, doBlock) {
return condBlock.apply().then(function (cond) {

if (cond) {
return doBlock.apply().then(function () {

return whileDo(condBlock, doBlock);
});

}
});

}

30



Skip

Pleasant Async?

condBlock f (cond) doBlock
cond

31



Skip

Pleasant Async?

doBlock g() condBlock

31



Skip

Pleasant Async?

condBlock f (cond) doBlock
cond

31



Skip

Closure Capture

When then is called, it creates a new task

If a function passed to then returns a task, the two are bound together:

new Task(function (resolve) {
onReady(function (value) {

if (value instanceof Task && value.isPending) {
value.then(resolve);

}
});

});

Each new inner task captures the outer one, creating an implicit chain

32



Skip

Closure Capture

resolve resolve resolve

33



Skip

Closure Capture

waitingOn

resolve

waitingOn

resolve

waitingOn

resolve

33



Skip

Breaking the Chain

The capture seems like a necessary part of the behaviour

Weak pointers?

I WeakSet and friends haven’t rolled out to many browsers yet

I Hopper should be able to support older browsers

34



Skip

The Simplest Solution

Drop the returns

function whileDo(condBlock, doBlock) {
return new Task(function (resolve) {
(function loop() {
condBlock.apply().then(function (cond) {

if (cond) doBlock.apply().then(function () {
loop();

});
else resolve();

}); }()); }); }

Loops are better than recursion again

35



Skip

The Simplest Solution

GC is lazy

36



Skip

Task Folding

Idea: Most tasks are just there to pass a value back to another task

What if we could skip over them?

f (v)

resolve resolve

v

resolve

37



Skip

Task Folding

Idea: Most tasks are just there to pass a value back to another task

What if we could skip over them?

f (v)

resolve resolve

v

resolve

37



Skip

Task Folding

Counterpoint: We can’t know whether these tasks have been stored

var store;
promise.then(function (value) {

return store = asyncOperation(value);
}).then(function () {
console.log("Got to here");
store.then(function () { console.log("But not here"); });

});

38



Skip

Task Folding

Tasks are reactive!

I The only way to tell if a task is done is by calling then
I These tasks are identi�ed by having no other pending callbacks

These tasks can be ‘put to sleep’, and then wakes them back up

I They would need to explicitly store the tasks in front

I But this doesn’t prevent them from being GCed

39



Skip

Task Folding

Idea: Most tasks are just there to pass a value back to another task

What if we could skip over them?

f (v)

resolver resolver

v

resolve

40



Skip

Taking Out The Garbage

Promises are nice but expensive in large (huge) numbers

I It’s not entirely clear if this is avoidable here

It’s okay to allocate a lot, as long you collect a lot

I Optimise the implementation without compromising behaviour

41



Jump

Distant Returns

A return always refers to the nearest enclosing method

method capAtTen(x) {
if (x > 10) then {

return 10
}

return x
}

42



Jump

The Jump

The execution jumps back to the method’s call point

Each return function is a continuation for the call point

· · ·

capAtTen() if()then() apply

43



Jump

The Jump

The execution jumps back to the method’s call point

Each return function is a continuation for the call point

· · · capAtTen()

if()then() apply

return

43



Jump

The Jump

The execution jumps back to the method’s call point

Each return function is a continuation for the call point

· · · capAtTen() if()then()

apply

return return

43



Jump

The Jump

The execution jumps back to the method’s call point

Each return function is a continuation for the call point

· · · capAtTen() if()then() apply
return return return

43



Jump

The Jump

The execution jumps back to the method’s call point

Each return function is a continuation for the call point

· · · capAtTen() if()then() apply
return return return

43



Jump

The Jump

Each method call has a ‘return’ function

A return calls this function, and terminates its own execution

I (By returning a task that is never resolved or rejected)

E�cient! No need to manually roll back the stack

I The ‘stack’ is a implicitly linked list of functions

44



Jump

Finally

But what if we have to clean up?

method broken {
try { return } finally { mustRun }

}

We speci�cally jump over the �nally, completely forgetting about it

I There’s no explicit stack, so there’s nowhere to remember this

I Rolling back the stack manually wouldn’t have this problem

45



Jump

Finally

Solutions?

I Index the callbacks with their position in the stack?

I Can Promise-like objects help us here as well?

46



Conclusion

Final Points

Promises can still �ll the complexity budget

I Large-scale asynchronous behaviour is just hard

I Promises aren’t (lightweight) threads!

Like all abstractions, there are costs

I The JavaScript environment is not your friend

47



Conclusion

$ npm install hopper

https://github.com/zmthy/hopper

https://promisesaplus.com

tim@ecs.vuw.ac.nz

48

https://github.com/zmthy/hopper
https://promisesaplus.com
tim@ecs.vuw.ac.nz

	Background
	Hop
	Skip
	Jump
	Conclusion

